This chapter is a brief introduction to the satellite and its instruments, and is intended as a simplified guide for the proposer. Reading it thoroughly should provide the reader with the necessary information to understand the capabilities of the instruments at a level sufficient to prepare the feasibility section of an Suzaku proposal.
In its first year of operation, Suzaku has accumulated data from calibration, SWG and GO observations. The list of all observations performed is available at .
Suzaku is in many ways similar to ASCA in terms of orbit, pointing, and
tracking capabilities. Suzaku uses the same station (USC) as ASCA did
for uplink and downlink, although downlink at NASA DSN is not possible with Suzaku
(see footnote in subsection 2.2.2). As a result, the operational constraints for
Suzaku are also similar to those of ASCA. Suzaku is placed in a
near-circular orbit with an apogee of 568 km, an inclination of 31.9
degrees, and an orbital period of about 96 minutes. The maximum slew
rate of the spacecraft is degrees/min, and settling to the final
attitude takes
minutes, using the star trackers.
The normal mode of operations will
have the spacecraft pointing in a single direction for at least 1/4
day (10 ksec; but see ``raster-scanning'' in section 2.2.1). With this
constraint, most targets will be occulted by the Earth for about one
third of each orbit, but some objects near the orbital poles can be
observed nearly continuously. The
observing efficiency of the satellite as measured after a year of operation is about 45%.
![]() ![]() |
The scientific payload of Suzaku (Fig. 2.2) initially consisted of three distinct co-aligned scientific instruments. There are four X-ray sensitive imaging CCD cameras (X-ray Imaging Spectrometers, or XISs), three front-illuminated (FI; energy range 0.4-12 keV) and one back-illuminated (BI; energy range 0.2-12 keV), capable of moderate energy resolution. Each XIS is located in the focal plane of a dedicated X-ray telescope. The second instrument is the non-imaging, collimated Hard X-ray Detector (HXD), which extends the bandpass of the observatory to much higher energies with its 10-600 keV pointed bandpass. The X-Ray Spectrometer (XRS) is no longer operational, and will not be discussed further. Interested readers are invited to access the XRS instrument paper at .
|
![]() |
All of the instruments on Suzaku operate simultaneously. Each of the
co-aligned XRTs features an X-ray mirror with an angular resolution
(expressed as Half-Power Diameter, or HPD) of (cf.
Fig.2.4). Figure 2.3 shows the total effective area
of the XIS+XRT, which includes features due to the elemental
composition of the XIS and XRT. K-shell absorption edges from the
oxygen (0.54 keV) and aluminum (1.56 keV) in the
blocking filters are present, as well as a number of weak M-shell
features between 2-3 keV arising from the gold in the XRT.
The four XISs (cf. Fig.6.2) are true imagers, with a
large field of view (
), and moderate spectral
resolution.
![]() |
The HXD (cf. Fig.7.1) is a non-imaging instrument
with an effective area of cm
, featuring a
compound-eye configuration and an extremely low background. It
dramatically extends the bandpass of the mission with its nominal
sensitivity over the 10 - 600 keV band (cf. Fig.2.5).
The HXD consists of two types of sensors: 2 mm thick silicon PIN
diodes sensitive over 10 - 70 keV, and GSO crystal scintillators
placed behind the PIN diodes covering 40 - 600 keV. The HXD field of
view is actively collimated to
by the
well-shaped BGO scintillators, which, in combination with the GSO
scintillators, are arranged in the so-called phoswich configuration.
At energies below
keV, an additional passive collimation
further reduces the field of view to
. The energy
resolution is
4.0 keV (FWHM) for the PIN diodes, and
% (FWHM) for the scintillators (where
is energy in
MeV). The HXD time resolution for both sensors is 61
s. While
the HXD is intended mainly to explore the faintest hard X-ray
sources, it can also tolerate very bright sources up to
Crab. The HXD also performs as an all-sky monitor (the Wide-band All-sky
Monitor (WAM), which can detect GRB and other sources. Although
observers will receive data from the WAM, it cannot be proposed for
directly and has special rules regarding data rights; see
Chapter 3.
Because the HXD bore-sight axis, with the highest effective area, is
about 3.5 arcmin shifted from that of the XISs, Suzaku supports two
aimpoints, XIS and HXD oriented. Users are requested to select which
pointing axis is best for your observations. For the XIS, choosing
the XIS aimpoint provides a larger XIS effective area
than the HXD aimpoint. Conversely for the HXD, the HXD aimpoint
provides a
larger HXD effective area than the XIS
aimpoint. Note that a 10% increase in effective area corresponds to
a 20% increase in observing time for background dominated
observations. For source dominated observations, the effect is 10%.
Please take into account these effects in your observation plan.
Suzaku carries a 6 Gbit data recorder. Data will be downlinked to USC at a rate of 4 Mbps for a total of 2 Gbits per pass, up to 5 times a day. This allows a maximum of 10 Gbits of data to be obtained per day, but fewer passes may be available to Suzaku as it will share the use of USC ground station with other ISAS satellites2.1. Data can be recorded at 4 different rates: Super-High (524 kbps), High (262 kbps), Medium (131 kbps), and Low (33 kbps). The recording rate will be changed frequently throughout an observation, according to a sequence that will be determined by the operations team at ISAS. This is to optimize the selection of the data rates and the usage of the data recorder, taking into account the expected count rates supplied by the proposers. Thus an accurate estimation of the count rates is important for the optimization of the mission operation. We emphasize that proposers cannot arbitrarily choose the data recording rate.
On-source data will usually be recorded at High (during contact orbits, during which the satellite passes over USC) or Medium (during remote orbits, without USC passes) data rate. The Low rate will primarily be used for times of Earth occultations and SAA passages, as the background rates in the XIS and HXD exceed their telemetry allocation limit at Low data rate. The telemetry limits for the XIS are presented in Chapter 6. The XIS data mode will be chosen for each data recording rate used to prevent telemetry saturation, based on the count rate supplied by the proposer.
Suzaku excels for observations such as:
Suzaku is less appropriate for:
Calibration observations for Suzaku started 4 weeks after the
launch. The list of all calibration targets done during Phase-1A
can be found on the Suzaku websites listed in Appendix C.
Table 2.2 summarizes the calibration items of all scientific instruments, the current status, and their expected and measured accuracy.
Calibration Item | October 2006 | October 2005 | Requirement | Goal | |
XRT![]() |
On-axis effective area ![]() |
![]() |
![]() |
5% | 5% |
Vignetting![]() |
![]() |
![]() |
5% | 2% | |
On-axis EEF ![]() |
![]() |
![]() |
5% | 1% | |
Off-axis EEF ![]() |
![]() |
![]() |
20% | 2% | |
Optical axis position in XIS | ![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
|
Energy scale![]() |
max(0.2%, 5eV) | 0.3% | 0.1% | 0.1% | |
Energy resolution (FWHM) at 5.9 keV | 5%![]() |
5% | 1% | 1% | |
Contamination thickness![]() |
10![]() ![]() |
N/A | N/A | N/A | |
OBF integrity | unbroken | unbroken | broken/unbroken | broken/unbroken | |
HXD | Absolute effective area | 20% | 20% | 20% | 5% |
Relative effective area | 15% | 10% | 10% | 5% | |
Vignetting | 5% | 5% | 10% | 5% | |
Background modeling (PIN)![]() |
![]() |
5% | 10% | 1% | |
Background modeling (GSO)![]() |
![]() |
10% | 10% | 3% | |
Absolute timing![]() |
600 ![]() |
300 ![]() |
100 ![]() |
||
Relative timing![]() |
3![]() ![]() |
10![]() |
10![]() |
||
GRB absolute timing | ![]() |
100 ms | 15 ms |
Note ![]() a: Valid in 2-10 keV band. Calibration uncertainty may become larger outside this energy range, especially below 0.3 keV (BI chip) and above 10 keV. We calibrated the effective area using spectral parameters of the Crab emission as those given by Toor & Seward (1974, AJ, 79, 995) b: For all integration radii from 1 ![]() ![]() c: As on-axis but for all XIS f.o.v. No calibration is currently scheduled. d: For the normal mode data. Uncertainties of the energy scale increase when the burst and/or window options are applied. e:When xisrmfgen is used. Note that an error of 5% in the energy resolution could produce an artificial line width of as large as ![]() f:Uncertainty represented as the carbon-equivalent column density. Valid only at the center of the field of view. g: Modeling accuracy depends on energy-band and exposure. See Chapter 7 for detail. Presented are example for 15-40 keV with 100 ks (PIN),and 50-100 keV with 100 ks (GSO), with rev1.2 BGD modeling. Study continues. h: The Crab and PSR 1509 pulses are clearly detected in the quick look analysis of calibration data. |